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Summary

The Viridiplantae (green plants) include land plants as well

as the two distinct lineages of green algae, chlorophytes
and charophytes. Despite their critical importance for identi-

fying the closest living relatives of land plants, phylogenetic
studies of charophytes have provided equivocal results

[1–5]. In addition, many relationships remain unresolved
among the land plants, such as the position of mosses,

liverworts, and the enigmatic Gnetales. Phylogenomics
has proven to be an insightful approach for resolving chal-

lenging phylogenetic issues, particularly concerning deep
nodes [6–8]. Here we extend this approach to the green

lineage by assembling a multilocus data set of 77 nuclear
genes (12,149 unambiguously aligned amino acid positions)

from 77 taxa of plants. We therefore provide the first multi-

gene phylogenetic evidence that Coleochaetales represent
the closest living relatives of land plants. Moreover, our

data reinforce the early divergence of liverworts and the
close relationship between Gnetales and Pinaceae. These

results provide a newphylogenetic framework and represent
a key step in the evolutionary interpretation of develop-

mental and genomic characters in green plants.

Results and Discussion

Weaddress here for the first time the question of the origin and
early relationships of land plants using the full set of nuclear
ribosomal proteins, which have shown to be valuable phyloge-
netic markers [7, 9]. We also carefully inspect a set of discrete
genomic and morphological characters, which previously
brought insightful evidence to deep plant phylogeny [10–13].
We took advantage of the increasing number of available
expressed sequence tags (ESTs) that allowed us to sample
diverse genes from a large number of taxa [14]. In addition,
we generated new transcriptomic data by applying pyro-
sequencing to five selected species of charophyte algae
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(see Experimental Procedures). These freshwater algae are
pivotal in understanding the origin of land plants, because
they are thought to be the closest relatives of embryophytes
based on morphological similarities [15], molecular phylogeny
[13, 16], and rare genomic characters [10, 12]. However, the
question as to which charophyte lineage represents the sister
to land plants is far from settled [17–19].
We assembled a data set of 77 nuclear genes from 77 taxa,

of which 20 are built upon a composite approach designed to
take advantage of available taxonomic diversity (see Experi-
mental Procedures and Tables S1 and S2 available online).
Phylogenetic analyses of this multigene data set support
Coleochaetales as the closest extant relatives of land plants
(Figure 1; Bayesian posterior probabilities [PP] = 1, bootstrap
replicates [BP] = 91), and not Charales (e.g., Nitella) as
previously reported [13]. Notably, we observed extensive
differences between rates of molecular evolution inferred in
land plants and their algal relatives (Figures S1 and S2). This
prompted us to investigate the possible impact of long-branch
attraction on our reconstructions. First, we used a site-hetero-
geneousmodel of evolution (CAT), which has been reported to
handle nonphylogenetic signal more efficiently [20, 21], and
compared results with those obtained by using a more
classical site-homogeneous model (WAG). Statistical compar-
isons using a cross-validation approach show that the CAT
model fits our data better (likelihood score difference =
1697.81 6 96.39; see Experimental Procedures). We then
analyzed four distinct data sets in which deepest roots and
fastest evolving taxa were progressively removed (77-, 66-,
64-, and 61-taxon data sets; Figures S1 and S2). Coleochaete
branching as the sister group to land plants is remarkably
robust in this analysis with regard to inference models and
taxonomic sampling.
Coleochaetales share numerous characteristics with land

plants. These include morphological traits such as complex
three-dimensional organization, with parenchyma-like tissues
and placental transfer cell wall ingrowths in some species,
and zygote retention [15]. Ultrastructural studies have re-
vealed that cytokinesis in Coleochaete cells use a phragmo-
plast very similar to that of embryophytes [22]. Additionally,
Coleochaete cells have a land-plant-like peroxisome [22].
Several of these characters are found in the Charales and
Zygnematales as well, but the morphological features of the
Coleochaetales are certainly compatible with the phylogeny
found here. The placement of Coleochaetales as the sister
group to land plants also seems possible based on the fossil
record. For example, the late Silurian–early Devonian fossil
Parka has been compared to extant Coleochaete on the basis
of both structure and ecology [23], suggesting that Coleo-
chaetales may be an ancient group, although Parka was
also substantially larger than any known member of the
Coleochaetales. In addition, our phylogeny is consistent
with the distribution of a set of molecular signatures and
morphological characters under the parsimony criterion (Fig-
ure 2). For example, the intron in the nad5 mitochondrial gene
was reported at the same position in Coleochaete orbicularis,
Sphagnum (moss), and Marchantia (liverwort) but was found
missing in other charophyte and embryophyte taxa [13],
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Figure 1. Phylogram of the 77-Taxon Analyses

RAxML maximum-likelihood analyses and PhyloBayes Bayesian analyses were conducted under the PROTMIXWAG model and the CAT model, respec-

tively. The overall matrix represents 12,149 amino acids and exhibits 19% missing data (Table S1). Support values obtained after 100 bootstrap replicates

(BP) and Bayesian posterior probabilities (PP) are shown for selected branches (all of the support values are shown in Figures S1 and S2). A dot indicates

support values of PP = 1 and BP > 95. Scale bar indicates number of changes per site. According to the most recent phylogenies of eukaryotes, the branch

leading to the glaucophytes was used to root this tree.
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which may be compatible with a gain in a putative common
ancestor of land plants and Coleochaetales, followed by
secondary losses (Figure 2). It is noteworthy that this
molecular signature further supports the placement of
hornworts as the sister to vascular plants. However, the
absence of the nad5 intron in other examined species of
Coleochaete suggests a much more complex evolution of
this character [13].
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Characters of Charophytes Discussed in the

New Phylogenetic Framework

Key to character changes: 1, acquisition of the

glycolate oxidase, a key enzyme involved in the

degradation of glycolate in peroxisomes; 2, loss

of the flagella in vegetative phase (reproductive

cells remain motile); 3–5, structural markers in

chloroplast genomes (see [19] for a more

complete study of genomic characters); 6, ability

to develop complex, filamentous thalli with

branching; 7, acquisition of intercellular commu-

nication via plasmodesmata, which are exten-

sions of the plasma membrane connecting the

cytoplasm of each cell with that of its neighbors;

8, presence of an intron in the mitochondrial gene

nad5; 9, acquisition of a life cycle with alternation

of diploid and haploid multicellular phases. Char-

acters were mapped based upon the parsimony

criterion. In particular, the mapping of the acqui-

sition of the nad5 intron is one of several possible

scenarios. j indicates acquisition; > indicates

loss.
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Our phylogeny provides insights into the internal structure of
the charophytes (Figure 1). None of our results indicate that the
charophyte algae represent amonophyletic lineage. TheChlor-
okybales and the Mesostigmatales are found to be the deep-
est branches of charophytes. These two orders do not make
up a clade in most of our analyses, challenging a recent
chloroplast genome-based phylogeny [24]. The placement of
Mesostigmatales as an outgroup to the remaining charophytes
is supported by the presence of vegetative flagella in
Mesostigmatales and chlorophytes, but not in other charo-
phytes (Figure 2). However, the grouping of Chlorokybales
andMesostigmatales has been recovered in some of our trees,
suggesting that further analyses will be necessary to settle the
relative position of these two groups. The Klebsormidiales are
subsequently found to diverge next with strong branch
support (PP = 1, BP = 100) (Figures S1 and S2). Hence, our
topology identifies the Mesostigmatales, Chlorokybales,
and Klebsormidiales as the earliest-diverging charophyte
lineages. This finding is congruent with the nuclear (versus
chloroplastic) localization of the tufA gene in late-diverging
charophyte lineages and land plants [2, 11, 25, 26] (Figure 2).
More unexpected is the grouping of Zygnematales with
Chaetosphaeridium, which was formerly allied with Coleo-
chaetales. If corroborated by further analyses, this would
have major implications for charophyte systematics. More
extensive sampling of Coleochaetales and Charales would
likely settle this issue in the future.

Among the flowering plants, relationships of relatively few
groups are still in dispute. Although the ANA grade (Amborel-
laceae, Nymphaeales, and Austrobaileyales) has been identi-
fied as the earliest-diverging branches, the relative positions
of Amborellaceae and Nymphaeales remain controversial
[27]. Our phylogeny identifies a clade including Amborella
and Nymphaeales as the sister to all other angiosperms.
Such a relationship needs to be corroborated by further
analyses, especially by improving the
sampling within the ANA grade. Another
noteworthy point is the placement of
Acorales as the sister group to Aspara-
gales (Figure 1; PP = 1, BP = 85). This
result, which has not been previously postulated, challenges
the view that Acorales represent the deepest branch of the
monocots. In addition, we observe a distinct branching for
magnoliids in site-homogeneous and site-heterogeneous
analyses, with a poorly supported eudicot sister-group rela-
tionship in the first case (BP = 36) and an early angiosperm
position in the second (PP = 0.99; Figure 1; Figures S1
and S2). This could indicate residual long-branch effects in
this part of the tree and suggests that further attention should
be paid to relative relationships of these taxa.
Among gymnosperms, we consistently place Gnetales

within conifers as sister group to Pinaceae (Figure 1; PP = 1,
BP = 100). Gnetales represent a puzzling order in that they
have vessel elements and chlamys-surrounded ovules and
perform double fertilization [28] as do flowering plants. These
similarities led some authors to formulate the so-called
‘‘anthophyte’’ hypothesis that proposed Gnetales as the sister
group of flowering plants [29, 30]. Conversely, our topology
rejects the monophyly of conifers and is consistent with the
‘‘gnepine’’ hypothesis [31–34]. This evolutionary scenario
implies that Gnetales lost several synapomorphies of conifers
(e.g., resin canal, tiered proembryos, ovulate cone scale) [35].
Interestingly, this topology is in agreement with a recent struc-
tural genomic study showing that all plastid ndh genes are
absent across Gnetales and Pinaceae, but not in any other
group of gymnosperms [36]. In addition, phylogenetic
analyses of the different data sets all provide strong evidence
that cycads are allied with Ginkgo (Figure 1; Figures S1
and S2).
The approach used here represents a technical advance in

plant phylogeny by identifying nuclear ribosomal proteins as
valuable phylogenetic markers. These markers are easily
retrievable from EST or transcriptomic data because they are
abundantly and ubiquitously expressed [37]. Additionally, the
full set of nuclear ribosomal protein genes only rarely includes
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duplicated copies. This minimizes orthology assessment
issues. Among the 136 taxa used in the present study, only
the genus Ostreococcus challenges this statement with an
unusual reduced number of 23 nuclear ribosomal protein
genes. The genome of the green alga Ostreococcus tauri
exhibits highly derived features, such as an extreme degree
of compaction and gene loss [38], so this discrepancy is not
altogether surprising, but study of the complete genomes of
additional early-diverging land plants and green algae will be
needed to validate inferences of orthology for data derived
from EST surveys. Application of this multigene approach to
the green lineage provided several interesting results, such
as the branching of Coleochaete as the sister group of land
plants. However, phylogenomics has proven highly sensitive
to systematic error, such as long-branch attraction, which
can be resolved by methodological improvements and
increased taxonomic sampling [39]. Concerning the grouping
of land plants and Coleochaete, a definitive conclusion will
thus only be achieved through both the collection of more
extensive genomic data in charophytes and bryophytes sensu
lato and the evaluation of possible systematic error still
affecting current models of molecular evolution.

The newly proposed phylogeny strengthens the view that
molecular phylogeny can reveal patterns of morphological
diversity across very deep lineages in the Tree of Life. For
instance, we point out that, during the evolution of charophyte
algae, no clear trend is displayed toward increasing com-
plexity. Indeed, land plants share a common ancestor with
Coleochaetales, a lineage that shows a great diversity in tissue
organization, ranging from filamentous (C. pulvinata) to paren-
chymatous (C. orbicularis). Conversely, charophytes found in
this analysis to be more distantly related to land plants, like
the genus Nitella, exhibit whorled branches, suggesting that
this grade of organismal complexity may have evolved inde-
pendently [40]. This could prompt a reappraisal of the fossil
record, shedding light on ecological and morphological char-
acters that allowed the very significant colonization of land.

In summary, Coleochaete represents a pivotal model for
studying the origin of land plants. Developmental genetics
approaches and genome sequencing could untangle evolu-
tionary origins of prominent embryophyte features. First, this
could help to determine how a shift in tissue organization
took place, from filamentous to parenchymatous land plants
[41, 42]. Second, enclosed zygotes of Coleochaete are remi-
niscent of land plant embryos whose evolutionary appearance
is still mysterious. It would be interesting to determine whether
key genes in embryo development are present inColeochaete,
revealing a possible ancestral toolkit in the common ancestor
of Coleochaetales and land plants.

Experimental Procedures

Generation of Charophyte Transcriptomic Data

A mixture of classical Sanger sequencing of cDNA (EST sequence) and

next-generation 454 pyrosequencing yielded high-grade assembly of

unigene transcripts for a representative collection of five charophyte

species: Chaetosphaeridium globosum, Chlorokybus atmophyticus,

Klebsormidium flaccidum, Nitella hyalina, and Penium margaritaceum

(Table S1). EST libraries were built following the same experimental proce-

dure as described previously [43] reporting the collection of Coleochaete

orbicularis and Spirogyra pratensis, also included in the present study.

Multigene Data Set and Composite Taxa

Ribosomal proteins are valuable phylogenetic markers because of conser-

vation among eukaryotes [9], membership of nonmultigenic superfamilies

(no orthology assignment issues), and relative abundance in EST
databases. Moreover, ribosomal proteins have been shown to be reliable

for reconstructing deep phylogenies [7]. In angiosperms, we chose to apply

a composite taxon strategy because it has been proven to limit branch

lengths and to handle a limited number of taxa that allows the employment

of parameter-rich models of evolution. This strategy starts from the defini-

tion of a set of unambiguously monophyletic species and goes through

the collection of least diverging sequence or species for each marker, so

as to ultimately yield a unique composite taxon by concatenation. For

example, this has led to strong shortening of the nematode branch by

surveying the multiple EST collections available for this clade [7]. We

surveyed available EST collections for taxa of interest at NCBI dbEST (Table

S1). These data were downloaded, stored locally, and processed using

a taxon-building pipeline operated by using Perl scripts. For each taxon,

a first BLAST [44] search collected all sequences similar to a canonical

set of ribosomal proteins (cutoff score 50). The ribosomal transcripts were

assembled using Phrap [45]. A second BLAST search was carried out on

assembled transcripts of each taxon and was allowed to select the least

dissimilar sequence for each marker and to detect the coding frame for

translation. Alignments for individual marker genes were generated using

MUSCLE [46] and manually checked using MacVector (MacVector, Inc.).

Before marker concatenation, removal of ambiguously aligned regions

was performed with Gblocks on individual genes, using the least stringent

parameters [47]. The overall 77-taxon matrix represents 12,149 amino acids

and exhibits 19% missing data (Table S1), which is far less than amounts

observed in recent phylogenomic studies [8, 48] and is well below the

‘‘reasonable’’ amount of missing data allowed for accurate phylogenetic

reconstruction [9].

Data Set Validation

The integrity of the data set and especially the possible contamination

status were verified by inferring independent trees for independent marker

genes using PhyML and the WAG+G4 model. We carefully checked each of

the trees for cases exhibiting a well-supported branch (bootstrap

percentage > 70%) incongruent with our concatenated analysis. Molecular

evolution parameters collected through these analyses are summarized in

Table S2.

Because many proximal nodes in plant phylogeny remain ambiguous,

especially within relatively recently diverging angiosperms, we attempted

to verify that our composite strategy did not utilize taxa with questionable

monophyly. We then set up an alternative alignment that included all

species involved in composite taxa, in order to check their monophyly

(Table S1). This was carried out using the same procedure, except that

each original EST collection represented only one species. The resulting

tree from 136 taxa, obtained using RAxML (see below), confirmed themono-

phyly of all composite taxa.

Phylogenetic Reconstruction

The use of a concatenated approach for phylogenetic reconstruction at high

taxonomic level has already been demonstrated as a useful tool for

resolving longstanding phylogenetic issues [7, 8, 49]. However, such data

sets constitute large amounts of information in term of positions and taxa

that may be a challenge for tree inference. In particular, it has been shown

that phylogenomic data sets, when analyzed using improper methods and

models of evolution, can lead to deeply misleading topologies [39, 50, 51].

Recently, development of Bayesian inference has made it possible to

handle and estimate the multiple parameters of realistic models of evolution

to limit reconstruction artifacts. Particularly, the CAT model introduces

multiple profiles of amino acid substitutions that are distinguished by their

equilibrium frequencies and are thus able to cope with the heterogeneity

of protein data encountered in large phylogenomic alignments [20].

We first used the PhyloBayes 3.2 program, which implements a site-

heterogeneous CAT model [52]. For the different data sets, we ran two

chains for at least 20,000 cycles (w2,200,000 generations) and removed

the first 5,000 cycles as burn-in. Maximal posterior differences recovered

were 0.12 for the 77-taxon data set, 0.20 for the 66-taxon data set, 0.27

for the 64-taxon data set, and 0.17 for the 61-taxon data set (Figure S1),

values that are all consistent with an accurate estimation of posterior

consensus. Run parameters of the chains were also plotted together

against time to check appropriate convergence and chain mixing. In addi-

tion, we employed RAxML 7.0.4, which allows efficient maximum-likeli-

hood analyses of large data sets [53]. All searches were completed with

the PROTMIXWAG setting (an efficient approximation of the WAG+G

model), and 100 bootstrap replicates were conducted for support

estimation.
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We statistically compared CAT and WAG models using cross-validation

tests [54]. Ten replicates (9 of 10 for the learning set and 1 of 10 for the

testing set) were run assuming eachmodel under evaluation for 1,500 cycles

(500 being discarded as burn-in). We determined that the CAT model had

a much better statistical fit than WAG likelihood difference (CAT versus

WAG: 1697.81 6 96.3913).

The different data sets and obtained topologies are available on

TreeBASE (http://purl.org/phylo/treebase/phylows/study/TB2:S10983).
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44. Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller,

W., and Lipman, D.J. (1997). Gapped BLAST and PSI-BLAST: A new

generation of protein database search programs. Nucleic Acids Res.

25, 3389–3402.

45. Green, P. (1996). Phrap documentation (http://www.phrap.org/

phredphrap/phrap.html).

46. Edgar, R.C. (2004). MUSCLE: Multiple sequence alignment with high

accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797.

47. Castresana, J. (2000). Selection of conserved blocks from multiple

alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17,

540–552.

48. Hejnol, A., Obst, M., Stamatakis, A., Ott, M., Rouse, G.W., Edgecombe,
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